
 

 

PROTEIN-LIGAND BINDING AFFINITY PREDICTION USING DEEP 

LEARNING 

ABENA ACHIAA ATWEREBOANNAH1, WEI-PING WU1,2*, LEI DING2, SOPHYANI B. YUSSIF1, EDWIN 

KWADWO TENAGYEI1 

1School of Computer Science and Engineering, University of Electronic Science and 

Technology of China, Chengdu, P. R. China 
2SipingSoft Co. Ltd., Tianfu Software Park, Chengdu, P. R. China 

E-MAIL: atwereboannah@gmail.com, wei-ping.wu@uestc.edu.cn, xiandao.airs@gmail.com  

Abstract: 

Protein-ligand prediction plays a key role in drug 

discovery. Nevertheless, many algorithms are over reliant on 

3D structure representations of proteins and ligands which are 

often rare. Techniques that can leverage the sequence-level 

representations of proteins and ligands are thus required to 

predict binding affinity and facilitate the drug discovery 

process. We have proposed a deep learning model with an 

attention mechanism to predict protein-ligand binding affinity.  

Our model is able to make comparable achievements with state-

of-the-art deep learning models used for protein-ligand binding 

affinity prediction.    
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1. Introduction 

. The rate of success during the early stages of drug 

discovery depends on the binding affinity a ligand assumes 

with a target protein. In silico techniques such as quantum 

mechanics and molecular dynamics have been deployed for 

the binding affinity prediction tasks. Nevertheless, they are 

unpopular because of high computational cost.  

Computer-Aided Drug Discovery such as High-

Throughput Screening (HTS) [1], has achieved immense 

success in drug discovery. Recently, Deep Learning (DL) 

techniques have excelled in solving problems in the Drug 

domain such as Drug Permeability studies [2] and Drug-

Target Interaction Prediction and have superseded 

conventional screening methods.  

Data featurization is believed to be important in 

ensuring the success of any model. In the drug discovery 

domain, such feature extraction techniques have over 

powered the utilization of traditional molecular descriptors 

and fingerprints, in that they are able to extract features that 

may have been illusive prior to the process of training. 

In this work we propose a DL framework with an 

attention mechanism to focus on extracting relevant features 

from each of the three datasets we obtained from the 

PDBbind database version 2016 [3].   

The subsequent sections are organized as follows: 

section 2 presents the related work of our study, section 3 

discusses the data used and our proposed model, section 4 

highlights the experiments design of our study and results 

obtained. We then discuss the results in session 5 and draw 

conclusions in session 6. 

2. Related work 

Researchers in the field of Bioinformatics have used DL 

models extensively for protein-ligand binding affinity 

prediction tasks. Structure-based and Ligand-based methods 

and are the two main categories. DL Models, such as 

TopologyNet [4] are structure-based algorithm highly 

dependent on the nature of the molecular input and only uses 

the provided complex protein-ligand structures. Structure-

independent approaches include MONN [5] which gives a 

more interpretable prediction of binding affinities, DeepDTA 

[6] and WideDTA [7]. These models take advantage of 

SMILES (Simplified Molecular Input Line Entry System) 

ligands and sequences of Proteins. The ligand-based methods 

again represent the vectors of features with molecular 

fingerprints and the neural networks are established on top 

of them. Thus, some ligand-dependent ML models have 

achieved remarkable success in bioactivity [8] and toxicity 

prediction [9].  

3. Materials and methods 

3.1. Data 

The three datasets obtained from the PDBbind database 
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v2016 comprise 9221 protein-ligand components, for the 

general set, the refined set made up of 3685 binding affinities 

and the core 2016 set containing 290 complexes. In order to 

ensure a fair comparison, we followed the data pre-

processing scheme of DeepDTA and tested on the core16 test 

set. Just like DeepDTAF [10], we fed our model with 1D 

sequence data. This was divided into 3 subsets consisting of 

the ligand, protein and pockets descriptions.   

3.2. Model 

We represented the three input datasets with embedded 

layers of vector dimension 128. In order to target the relevant 

features, we passed these features through Self attention 

layers before passing their one-dimension output through 

dilated convolution blocks with the exception of the output 

from the pocket module which we applied 3 normal 

convolution layers of one dimension with 3 corresponding 

filters of 32, 64 and 128 [8]. We then applied max pooling to 

all 3 modules and finally concatenated their outputs before 

passing them to a classification model made up of 3 fully 

connected layers and two dropout layers, both of rate 0.5 as 

shown in Figure 1. 

3.3 Self-attention layers 

The sublayers used for the implementation of Self-

attention uses h  heads of attention. The output from the 

sublayer is derived by applying a linear transformation to the 

concatenated outputs from each of attention heads [12].  

Figure 2 shows the detailed Self- attention architecture.  

Let 1( ,..., )nx x x=  be the sequence of an input data 

each Self-attention head operates on. Number of elements is 

represented by n   and xd

ix R  . Again, a new sequence 

1( ,..., )nz z z= with the same length zd

iz R is computed 

by each attention head. Every one output iz , is the sum of 

the weights of a linearly translated input elements given as: 

Figure 1. Our proposed deep learning architecture 

 

 

Figure 2. Detailed Self-attention architecture [11] 
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While ije
 is obtained with an equation which compares two 

inputs:  

 
( )( )Q K T

i j

ij

z

xW x W
e

d
=          (3) 

Where 
QW  , 

KW  , 
VW x zd d

R


  are matrix parameters 

different from layer to layer and attention heads. We adopted 

the Self-attention model of [10]. 

3.4 Dilated convolution 

Unlike traditional convolutional layers, the dilated 

convolution layers are able to retrieve contextual information 

in a multiscale.  

Their major advantage over traditional convolution is that 

the dilated convolution initially records inherent sequence 

information by extending the field of convolution kernel 

without increasing the model’s parameters. The operator of 

dilated convolution l  is expressed as:  
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where the discrete function is represented as
2:F Z R→ . 

1:k R → is the distinct 3 3 filters, the dilation rate is 

l with s and t being the subscripts of element vector. We used 

the same dilation configuration as DeepDTAF for the protein 

and ligand modules. 

3.5 Evaluation metrics 

In order to make a fair comparison we used the same 

evaluation metrics as TopologyNet. The metrics used are 

described briefly.  

 

3.5.1 Mean absolute error (MAE) 

The Mean absolute error is the average of the absolute 

difference between the ground truth and predicted values in 

the dataset. This is expressed as:  
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where, y


is the predicted affinity of y and 

_

y . 

 

3.5.2 Root mean square error (RMSE) 

 

This is used to measure the average deviation in L2 norm 

between the ground truth value and the related predicted 

value. It is given as: 

2

1

1
( )

N

i

i

RMSE MSE y y
N



=

= = −         (6) 

    

3.5.3 Standard deviation (SD) 

For regression tasks, SD is expressed as: 
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where the number of protein-ligand structures are 

represented by N  . The gradient and intercept of the 

function line between the actual and predicted values are 

represented with a  and b .   

 

3.5.4 Concordance index (CI) 

 

The ratio of the predicted and true affinity values for 

two randomly selected protein–ligand complexes is 

computed with CI in a particular order. This is defined as: 
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where iy


is the predicted value for the greater binding affini

ty value iy and jy


is the predicted value for the smaller affin

ity value jy . Z is the sum of the protein-ligand complexes.

 A larger CI is indicative of a good prediction performance. 

 

3.5.5 Correlation factor (R) 

 

The Correlation factor R shows how closely related the 

predicted affinity values are to the ground truth. The closer 

the R score to 1, the better the correlation. This is 

expressed mathematically as: 
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4. Training, results and evaluation 

We trained our model for 30 epochs on 4 GeForce GTX 

1080Ti server, Intel Xeon CPU E5-2687W with 128GB 

RAM. Our results are presented in Table 1 and compared in 

Table 2 with other state-of the art deep learning models as 

presented in  [10] on the test105 set. 

 

Table 1. Results obtained from Our Model 

Metrics Training Validation Test 

RMSE 0.819 1.378 1.436 

MAE 0.624 1.068 1.099 

R 0.900 0.743 0.750 

SD 0.812 1.373 1.438 

CI 0.864 0.775 0.784 

 

Table 2. Comparing with accuracies on test105 set 

Metrics TopologyNet  DeepDTA   Ours 

RMSE 4.143 1.425 1.436 

MAE 3.841 1.134 1.099 

R 0.444 0.652 0.750 

SD 1.530 1.432 1.438 

CI 0.646 0.738 0.784 

 

For the purpose of better evaluating performance of 

models, we mainly resort to MAE, R as well as CI. RMSE 

was not used as a major measurement because it casts a 

stronger restriction compared with MAE to force predicted 

value to conform with the ground value, but our ground value 

of affinity is naturally noisy. Meanwhile, SD also wasn’t 

taken as a relatively accurate indicator of model’s 

performance, since a  and b  vary in transformation space 

and such transformation is more likely to induce bias 

unavoidably. 

As presented in Table 2, Our model outperformed the 

other models with an MAE of 1.099, a CR of 0.750 and a CI 

score of 0.784, thus corroborating the importance of 

combining attention with convolutional layers for better 

model performance.  

5. Conclusion 

In this work we have, proposed a deep learning algorithm 

with an attention mechanism to predict protein-ligand 

binding affinities. Our model is able to achieve comparative 

results with other leading deep learning models with the 

highest MAE, CR and CI scores. 
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